November 9, 2024
Towards nutrition with precision: unlocking biomarkers as dietary assessment tools
  • Forouhi, N. G. & Unwin, N. Global diet and health: old questions, fresh evidence, and new horizons. Lancet 393, 1916–1918 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ioannidis, J. P. The challenge of reforming nutritional epidemiologic research. JAMA 320, 969–970 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bingham, S. A., Nelson, M., Paul, A. A., Loken, E. B. & van Staveren, W. A. Methods for data collection at an individual level. in Manual on Methodology for Food Consumption Studies (eds Cameron, M. & Van Staveren, W. A.) 53–106 (Oxford University Press, 1988).

  • Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jenab, M., Slimani, N., Bictash, M., Ferrari, P. & Bingham, S. A. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum. Genet. 125, 507–525 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Brouwer-Brolsma, E. M. et al. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 76, 619–627 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gao, Q. et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 12, 34 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brennan, L. & Hu, F. B. Metabolomics‐based dietary biomarkers in nutritional epidemiology-current status and future opportunities. Mol. Nutr. Food Res. 63, 1701064 (2019).

    Article 

    Google Scholar 

  • Dragsted, L. O. et al. Validation of biomarkers of food intake—critical assessment of candidate biomarkers. Genes Nutr. 13, 14 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, M. B. S. et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 13, 1405–1418 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gürdeniz, G. et al. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. Clin. Nutr. 41, 441–451 (2022).

    Article 
    PubMed 

    Google Scholar 

  • McNamara, A. E. et al. The potential of multi-biomarker panels in nutrition research: total fruit intake as an example. Front. Nutr. 7, 577720 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castellano-Escuder, P. et al. Assessing adherence to healthy dietary habits through the urinary food metabolome: results from a european two-center study. Front. Nutr. 9, 880770 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Perez, I. et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5, 184–195 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckmann, M. et al. Challenges associated with the design and deployment of food intake urine biomarker technology for assessment of habitual diet in free-living individuals and populations–a perspective. Front. Nutr. 7, 602515 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sobiecki, J. G. et al. A nutritional biomarker score of the Mediterranean diet and incident type 2 diabetes: Integrated analysis of data from the MedLey randomised controlled trial and the EPIC-InterAct case-cohort study. PLoS Med. 20, e1004221 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wadell, A. T. et al. Dietary biomarkers and food records indicate compliance to study diets in the ADIRA (anti-inflammatory diet in rheumatoid arthritis) trial. Front. Nutr. 10, 1209787 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vázquez-Manjarrez, N. et al. Discovery and validation of banana intake biomarkers using untargeted metabolomics in human intervention and cross-sectional studies. J. Nutr. 149, 1701–1713 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cuparencu, C. et al. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur. J. Nutr. 60, 179–192 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, C. et al. Biomarker-calibrated red and combined red and processed meat intakes with chronic disease risk in a cohort of postmenopausal women. J. Nutr. 7, 1711–1720 (2022).

    Article 

    Google Scholar 

  • Li, C. et al. Development and validation of a metabolite score for red meat intake: an observational cohort study and randomized controlled dietary intervention. Am. J. Clin. Nutr. 116, 511–522 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brouwer-Brolsma, E. M., Brandl, B., Buso, M. E., Skurk, T. & Manach, C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. Genes Nutr. 15, 7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuparencu, C. et al. Biomarkers of meat and seafood intake: an extensive literature review. Genes Nutr. 14, 35 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Aloy, M. et al. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. Genes Nutr. 14, 7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landberg, R. et al. Biomarkers of cereal food intake. Genes Nutr. 14, 28 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münger, L. H. et al. Biomarker of food intake for assessing the consumption of dairy and egg products. Genes Nutr. 13, 26 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Praticò, G., Gao, Q., Manach, C. & Dragsted, L. O. Biomarkers of food intake for Allium vegetables. Genes Nutr. 13, 34 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothwell, J. A. et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 13, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sri Harsha, P. S. et al. Biomarkers of legume intake in human intervention and observational studies: a systematic review. Genes Nutr. 13, 25 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulaszewska, M. et al. Food intake biomarkers for apple, pear, and stone fruit. Genes Nutr. 13, 29 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulaszewska, M. et al. Food intake biomarkers for berries and grapes. Genes Nutr. 15, 17 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vázquez-Manjarrez, N. et al. Biomarkers of intake for tropical fruits. Genes Nutr. 15, 11 (2020).

    Article 

    Google Scholar 

  • Zhou, X., Gao, Q., Praticò, G., Chen, J. & Dragsted, L. O. Biomarkers of tuber intake. Genes Nutr. 14, 9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trius-Soler, M. et al. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. Genes Nutr. 18, 7 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xi, M. & Dragsted, L. O. Biomarkers of seaweed intake. Genes Nutr. 14, 24 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rafiq, T. et al. Nutritional metabolomics and the classification of dietary biomarker candidates: a critical review. Adv. Nutr. 12, 2333–2357 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landberg, R. et al. Dietary biomarkers—an update on their validity and applicability in epidemiological studies. Nutr. Rev. https://doi.org/10.1093/nutrit/nuad119 (2023).

  • Praticò, G. et al. Guidelines for biomarker of food intake reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 13, 3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Playdon, M. C. et al. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am. J. Clin. Nutr. 119, 511–526 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landberg, R. et al. Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am. J. Clin. Nutr. 89, 290–296 (2008).

    Article 
    PubMed 

    Google Scholar 

  • McNamara, A. E. et al. Metabolomic‐based approach to identify biomarkers of apple intake. Mol. Nutr. Food Res. 64, 1901158 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gibbons, H. et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. 61, 1700037 (2017).

    Article 

    Google Scholar 

  • Yin, X. et al. Estimation of chicken intake by adults using metabolomics-derived markers. J. Nutr. 147, 1850–1857 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xi, M. et al. Combined urinary biomarkers to assess coffee intake using untargeted metabolomics: discovery in three pilot human intervention studies and validation in cross-sectional studies. J. Agric. Food Chem. 69, 7230–7242 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez, M. E., Marshall, J. R. & Sechrest, L. Invited commentary: Factor analysis and the search for objectivity. Am. J. Epidemiol. 148, 17–19 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Shan, Z. et al. Healthy eating patterns and risk of total and cause-specific mortality. JAMA Intern. Med. 183, 142–153 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Playdon, M. C. et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 104, 776–789 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shibutami, E. et al. Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS ONE 16, e0246456 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuparencu, C., Rinnan, Å. & Dragsted, L. O. Combined markers to assess meat intake—human metabolomic studies of discovery and validation. Mol. Nutr. Food Res. 63, 1900106 (2019).

    Article 

    Google Scholar 

  • Canyelles, M. et al. Gut microbiota-derived TMAO: A causal factor promoting atherosclerotic cardiovascular disease? Int. J. Mol. Sci. 24, 1940 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung, W. et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 105, 600–608 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).

    Article 

    Google Scholar 

  • Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • D’Angelo, S. et al. Combining biomarker and food intake data: calibration equations for citrus intake. Am. J. Clin. Nutr. 110, 977–983 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Buso, M. E. et al. Relative validity of habitual sugar and low/no-calorie sweetener consumption assessed by FFQ, multiple 24-h dietary recalls and urinary biomarkers: an observational study within the SWEET project. Am. J. Clin. Nutr. 119, 546–559 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Fogelholm, M. et al. PREVIEW: prevention of diabetes through lifestyle intervention and population studies in Europe and around the world. design, methods, and baseline participant description of an adult cohort enrolled into a three-year randomised clinical trial. Nutrients 9, 632 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santoro, A. et al. Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project’s conceptual framework and design. Mech. Ageing Dev. 136, 3–13 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Neuhouser, M. L. et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 167, 1247–1259 (2008).

    Article 
    PubMed 

    Google Scholar 

  • El-Sohemy, A., Cornelis, M. C., Kabagambe, E. K. & Campos, H. Coffee, CYP1A2 genotype and risk of myocardial infarction. Genes Nutr. 2, 155–156 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nestel, N. et al. The gut microbiome and abiotic factors as potential determinants of postprandial glucose responses: a single-arm meal study. Front. Nutr. 7, 594850 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuparencu, C. S. et al. Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men. Metabolomics 12, 1–20 (2016).

    Article 
    CAS 

    Google Scholar 

  • Roager, H. M. & Christensen, L. H. Personal diet–microbiota interactions and weight loss. Proc. Nutr. Soc. 81, 243–254 (2022).

  • Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Xiao, Q. et al. Sources of variability in metabolite measurements from urinary samples. PLoS ONE 9, e95749 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y., Hodge, R. A., Stevens, V. L., Hartman, T. J. & McCullough, M. L. Identification and reproducibility of plasma metabolomic biomarkers of habitual food intake in a US diet validation study. Metabolites 10, 382 (2020).

  • Townsend, M. K. et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin. Chem. 59, 1657–1667 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sampson, J. N. et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomarkers Prev. 22, 631–640 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kruve, A. et al. Tutorial review on validation of liquid chromatography-mass spectrometry methods: part I. Anal. Chim. Acta 870, 29–44 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kruve, A. et al. Tutorial review on validation of liquid chromatography-mass spectrometry methods: part II. Anal. Chim. Acta 870, 8–28 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia‐Aloy, M. et al. Discovery of intake biomarkers of lentils, chickpeas, and white beans by untargeted LC–MS metabolomics in serum and urine. Mol. Nutr. Food Res. 64, 1901137 (2020).

    Article 

    Google Scholar 

  • Acar, E. et al. Forecasting chronic diseases using data fusion. J. Proteome Res. 16, 2435–2444 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, A. et al. Direct supplementation with urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 76, 297–308 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, Q. et al. Identification of urinary biomarkers of food intake for onion by untargeted LC–MS metabolomics. Preprint at https://arxiv.org/abs/2311.17194 (2023).

  • Couillard, C., Lemieux, S., Vohl, M. C., Couture, P. & Lamarche, B. Carotenoids as biomarkers of fruit and vegetable intake in men and women. Br. J. Nutr. 116, 1206–1215 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marklund, M. et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. J. Nutr. 144, 1642–1649 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hidalgo-Liberona, N. et al. Adherence to the Mediterranean diet assessed by a novel dietary biomarker score and mortality in older adults: the InCHIANTI cohort study. BMC Med. 19, 280 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bütikofer, U. et al. Serum and urine metabolites in healthy men after consumption of acidified milk and yogurt. Nutrients 14, 4794 (2022).

  • Zhou, X. et al. Urine metabolome profiling reveals imprints of food heating processes after dietary intervention with differently cooked potatoes. J. Agric. Food Chem. 68, 6122–6131 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, J. W. et al. The aroma volatile repertoire in strawberry fruit: a review. J. Sci. Food Agric. 98, 4395–4402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tokitomo, Y., Steinhaus, M., Büttner, A. & Schieberle, P. Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci. Biotechnol. Biochem. 69, 1323–1330 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haag, F., Hoffmann, S. & Krautwurst, D. Key food furanones furaneol and sotolone specifically activate distinct odorant receptors. J. Agric. Food Chem. 69, 10999–11005 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia-Aloy, M. et al. Novel multimetabolite prediction of walnut consumption by a urinary biomarker model in a free-living population: the PREDIMED study. J. Proteome Res. 13, 3476–3483 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gürdeniz, G. et al. Detecting beer intake by unique metabolite patterns. J. Proteome Res. 15, 4544–4556 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Quifer-Rada, P., Chiva-Blanch, G., Jáuregui, O., Estruch, R. & Lamuela-Raventós, R. M. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 61, 10 (2017).

  • Lindberg, M., Midthjell, K. & Bjerve, K. S. Long-term tracking of plasma phospholipid fatty acid concentrations and their correlation with the dietary intake of marine foods in newly diagnosed diabetic patients: results from a follow-up of the HUNT Study, Norway. Br. J. Nutr. 109, 1123–1134 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quifer‐Rada, P., Chiva‐Blanch, G., Jauregui, O., Estruch, R. & Lamuela‐Raventós, R. M. A discovery‐driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 61, 1600980 (2017).

    Article 

    Google Scholar 

  • Noerman, S. & Landberg, R. Blood metabolite profiles linking dietary patterns with health—toward precision nutrition. J. Intern. Med. 4, 408–432 (2023).

    Article 

    Google Scholar 

  • Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar 

  • García-Gavilán, J. F. et al. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease. Cardiovasc. Diabetol. 22, 340 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolar, A. S. et al. A practical method for collecting 3-day food records in a large cohort. Epidemiology 16, 579–583 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Bjerregaard, A. A., Halldorsson, T. I., Kampmann, F. B., Olsen, S. F. & Tetens, I. Relative validity of a web-based food frequency questionnaire for Danish adolescents. Nutr. J. 17, 9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Q. et al. Reproducibility of urinary biomarkers in multiple 24-h urine samples. Am. J. Clin. Nutr. 105, 159–168 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, T. et al. Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J. Nutr. 149, 1692–1700 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Monošík, R. & Dragsted, L. O. Dried urine swabs as a tool for monitoring metabolite excretion. Bioanalysis 10, 1371–1381 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lloyd, A. J. et al. Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure. Public Health Nutr. 23, 3081–3092 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmer, E. A., Cooper, H. J. & Dunn, W. B. Investigation of the 12-month stability of dried blood and urine spots applying untargeted UHPLC-MS metabolomic assays. Anal. Chem. 91, 14306–14313 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. 8, 11–29 (2023).

  • Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berger, L. et al. Ethyl glucuronide in hair and fingernails as a long‐term alcohol biomarker. Addiction 109, 425–431 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Pragst, F. et al. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages. Forensic Sci. Int. 196, 101–110 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoffmann, M. A. et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411–421 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Montenegro-Burke, J. R., Guijas, C. & Siuzdak, G. METLIN: a tandem mass spectral library of standards. Methods Mol. Biol. 2104, 149–163 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, J., Guijas, C., Benton, H. P., Warth, B. & Siuzdak, G. METLIN MS(2) molecular standards database: a broad chemical and biological resource. Nat. Methods 17, 953–954 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, E. S. et al. METLIN-CCS: an ion mobility spectrometry collision cross section database. Nat. Methods 20, 1836–1837 (2023).

  • Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • West, K. A., Schmid, R., Gauglitz, J. M., Wang, M. & Dorrestein, P. C. foodMASST a mass spectrometry search tool for foods and beverages. NPJ Sci. Food 6, 22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440–D444 (2019).

    PubMed Central 

    Google Scholar 

  • Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willis, N. D. et al. Design and characterisation of a randomized food intervention that mimics exposure to a typical UK diet to provide urine samples for identification and validation of metabolite biomarkers of food intake. Front. Nutr. 7, 561010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González-Domínguez, R. et al. Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites. Int. J. Obes. 44, 2372–2381 (2020).

    Article 

    Google Scholar 

  • González-Domínguez, R., Jáuregui, O., Queipo-Ortuño, M. I. & Andrés-Lacueva, C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal. Chem. 92, 13767–13775 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Brennan, L. & de Roos, B. Role of metabolomics in the delivery of precision nutrition. Redox Biol. 65, 102808 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dragsted, L. O. The metabolic nature of individuality. Nat. Food 1, 327–328 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, J. Precision nutrition in diabetes: when population-based dietary advice gets personal. Diabetologia 65, 1839–1848 (2022).

    Article 
    PubMed 

    Google Scholar 

  • van der Haar, S. et al. Exploring the potential of personalized dietary advice for health improvement in motivated individuals with premetabolic syndrome: pretest-posttest study. JMIR Form. Res. 5, e25043 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *