July 22, 2024
  • Pironi, L. Definitions of intestinal failure and the short bowel syndrome. Best. Pract. Res. Clin. Gastroenterol. 30, 173–185 (2016).

    Article 

    Google Scholar 

  • Gardiner, K. R. Management of acute intestinal failure. Proc. Nutr. Soc. 70, 321–328 (2011).

    Article 

    Google Scholar 

  • Allan, P. & Lal, S. Intestinal failure: a review. F1000Res 7, 85 (2018).

    Article 

    Google Scholar 

  • Lappas, B. M., Patel, D., Kumpf, V., Adams, D. W. & Seidner, D. L. Parenteral nutrition: indications, access and complications. Gastroenterol. Clin. North Am. 47, 39–59 (2018).

    Article 

    Google Scholar 

  • Brown, S. K. et al. Intestinal failure: the evolving demographic and patient outcomes on home parenteral nutrition. Acta Paediatr. 107, 2207–2211 (2018).

    Article 

    Google Scholar 

  • Naberhuis, J. K., Deutsch, A. S. & Tappenden, K. A. Teduglutide-stimulated intestinal adaptation is complemented and synergistically enhanced by partial enteral nutrition in a neonatal piglet model of short bowel syndrome. JPEN J. Parenter. Enter. Nutr. 41, 853–865 (2017).

    Article 
    CAS 

    Google Scholar 

  • Barnes, J. L., Hartmann, B., Holst, J. J. & Tappenden, K. A. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model. JPEN J. Parenter. Enter. Nutr. 36, 524–537 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wan, X. et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice. Nutrients 7, 6294–6312 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sun, H. et al. Partial enteral nutrition increases intestinal sIgA levels in mice undergoing parenteral nutrition in a dose-dependent manner. Int. J. Surg. 49, 74–79 (2018).

    Article 

    Google Scholar 

  • Dibb, M., Teubner, A., Theis, V., Shaffer, J. & Lal, S. Review article: the management of long-term parenteral nutrition. Aliment. Pharmacol. Ther. 37, 587–603 (2013).

    Article 
    CAS 

    Google Scholar 

  • Btaiche, I. F. & Khalidi, N. Metabolic complications of parenteral nutrition in adults, part 1. Am. J. Health Syst. Pharm. 61, 1938–1949 (2004).

    Article 
    CAS 

    Google Scholar 

  • Gosmanov, A. R. & Umpierrez, G. E. Management of hyperglycemia during enteral and parenteral nutrition therapy. Curr. Diab. Rep. 13, 155–162 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cheung, N. W., Napier, B., Zaccaria, C. & Fletcher, J. P. Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral nutrition. Diabetes Care 28, 2367–2371 (2005).

    Article 

    Google Scholar 

  • Kinnare, K. F., Bacon, C. A., Chen, Y., Sowa, D. C. & Peterson, S. J. Risk factors for predicting hypoglycemia in patients receiving concomitant parenteral nutrition and insulin therapy. J. Acad. Nutr. Diet. 113, 263–268 (2013).

    Article 

    Google Scholar 

  • Coudenys, E., Waele, E. D., Meers, G., Collier, H. & Pen, J. J. Inadequate glycemic control in patients receiving parenteral nutrition lowers survival: a retrospective observational trial. Clin. Nutr. Exp. 17, 1–7 (2018).

    Article 

    Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article 

    Google Scholar 

  • Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article 

    Google Scholar 

  • Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    Article 
    CAS 

    Google Scholar 

  • de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502–512 (2020).

    Article 

    Google Scholar 

  • Wang, J. et al. Gut microbiota as a modulator of paneth cells during parenteral nutrition in mice. JPEN J. Parenter. Enter. Nutr. 42, 1280–1287 (2018).

    Article 
    CAS 

    Google Scholar 

  • Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017).

    Article 
    CAS 

    Google Scholar 

  • Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Article 

    Google Scholar 

  • Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    Article 
    CAS 

    Google Scholar 

  • Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y. H. et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int. J. Obes. 43, 2407–2421 (2019).

    Article 

    Google Scholar 

  • Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article 
    CAS 

    Google Scholar 

  • Pironi, L. et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 35, 247–307 (2016).

    Article 

    Google Scholar 

  • Rosmarin, D. K., Wardlaw, G. M. & Mirtallo, J. Hyperglycemia associated with high, continuous infusion rates of total parenteral nutrition dextrose. Nutr. Clin. Pract. 11, 151–156 (1996).

    Article 
    CAS 

    Google Scholar 

  • Ukleja, A. & Romano, M. M. Complications of parenteral nutrition. Gastroenterol. Clin. North Am. 36, 23–46 (2007).

    Article 

    Google Scholar 

  • Bodoky, G., Meguid, M. M., Yang, Z. J. & Laviano, A. Effects of different types of isocaloric parenteral nutrients on food intake and metabolic concomitants. Physiol. Behav. 58, 75–79 (1995).

    Article 
    CAS 

    Google Scholar 

  • Meguid, M. M. et al. Effects of continuous graded total parenteral nutrition on feeding indexes and metabolic concomitants in rats. Am. J. Physiol. 260, E126–E140 (1991).

    CAS 

    Google Scholar 

  • Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article 
    CAS 

    Google Scholar 

  • Heneghan, A. F. et al. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. JPEN J. Parenter. Enter. Nutr. 38, 817–824 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 31, 77–91 (2020).

    Article 
    CAS 

    Google Scholar 

  • Martin, A. M. et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc. Natl Acad. Sci. USA 116, 19802–19804 (2019).

    Article 
    CAS 

    Google Scholar 

  • Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lu, P. et al. Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 61, 1908–1919 (2015).

    Article 
    CAS 

    Google Scholar 

  • Roh, E. et al. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes. Acta Diabetol. 52, 489–495 (2015).

    Article 
    CAS 

    Google Scholar 

  • Xu, C. X. et al. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int. J. Obes. 39, 1300–1309 (2015).

    Article 
    CAS 

    Google Scholar 

  • Remillard, R. B. & Bunce, N. J. Linking dioxins to diabetes: epidemiology and biologic plausibility. Environ. Health Perspect. 110, 853–858 (2002).

    Article 
    CAS 

    Google Scholar 

  • Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    Article 
    CAS 

    Google Scholar 

  • Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article 
    CAS 

    Google Scholar 

  • DeFronzo, R. A. et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    Article 
    CAS 

    Google Scholar 

  • Ying, W. et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J. Clin. Invest. 127, 1019–1030 (2017).

    Article 

    Google Scholar 

  • Kalafateli, M. et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the model for end-stage liver disease score. J. Cachexia Sarcopenia Muscle 8, 113–121 (2017).

    Article 

    Google Scholar 

  • Pichler, J., Chomtho, S., Fewtrell, M., Macdonald, S. & Hill, S. Body composition in paediatric intestinal failure patients receiving long-term parenteral nutrition. Arch. Dis. Child. 99, 147–153 (2014).

    Article 

    Google Scholar 

  • Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article 
    CAS 

    Google Scholar 

  • Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 95, 513–548 (2015).

    Article 
    CAS 

    Google Scholar 

  • Deng, G. et al. Glucagon-like peptide-2 modulates enteric Paneth cells immune response and alleviates gut inflammation during intravenous fluid infusion in mice with a central catheter. Front Nutr. 8, 688715 (2021).

    Article 

    Google Scholar 

  • Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article 
    CAS 

    Google Scholar 

  • Horan, T. C., Andrus, M. & Dudeck, M. A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 36, 309–332 (2008).

    Article 

    Google Scholar 

  • Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article 
    CAS 

    Google Scholar 

  • Folkes, L. K. & Wardman, P. Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid). Cancer Res. 63, 776–779 (2003).

    CAS 

    Google Scholar 

  • Ji, Y., Gao, Y., Chen, H., Yin, Y. & Zhang, W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis and oxidative and inflammatory stress. Nutrients 11, 2062 (2019).

    Article 
    CAS 

    Google Scholar 

  • Guo, H. et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370, eaay9097 (2020).

    Article 
    CAS 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article 
    CAS 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article 
    CAS 

    Google Scholar 

  • Qi, Z. et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 8, 13824 (2017).

    Article 
    CAS 

    Google Scholar 

  • Virtue, S. & Vidal-Puig, A. GTTs and ITTs in mice: simple tests, complex answers. Nat. Metab. 3, 883–886 (2021).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *