Pironi, L. Definitions of intestinal failure and the short bowel syndrome. Best. Pract. Res. Clin. Gastroenterol. 30, 173–185 (2016).
Google Scholar
Gardiner, K. R. Management of acute intestinal failure. Proc. Nutr. Soc. 70, 321–328 (2011).
Google Scholar
Allan, P. & Lal, S. Intestinal failure: a review. F1000Res 7, 85 (2018).
Google Scholar
Lappas, B. M., Patel, D., Kumpf, V., Adams, D. W. & Seidner, D. L. Parenteral nutrition: indications, access and complications. Gastroenterol. Clin. North Am. 47, 39–59 (2018).
Google Scholar
Brown, S. K. et al. Intestinal failure: the evolving demographic and patient outcomes on home parenteral nutrition. Acta Paediatr. 107, 2207–2211 (2018).
Google Scholar
Naberhuis, J. K., Deutsch, A. S. & Tappenden, K. A. Teduglutide-stimulated intestinal adaptation is complemented and synergistically enhanced by partial enteral nutrition in a neonatal piglet model of short bowel syndrome. JPEN J. Parenter. Enter. Nutr. 41, 853–865 (2017).
Google Scholar
Barnes, J. L., Hartmann, B., Holst, J. J. & Tappenden, K. A. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model. JPEN J. Parenter. Enter. Nutr. 36, 524–537 (2012).
Google Scholar
Wan, X. et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice. Nutrients 7, 6294–6312 (2015).
Google Scholar
Sun, H. et al. Partial enteral nutrition increases intestinal sIgA levels in mice undergoing parenteral nutrition in a dose-dependent manner. Int. J. Surg. 49, 74–79 (2018).
Google Scholar
Dibb, M., Teubner, A., Theis, V., Shaffer, J. & Lal, S. Review article: the management of long-term parenteral nutrition. Aliment. Pharmacol. Ther. 37, 587–603 (2013).
Google Scholar
Btaiche, I. F. & Khalidi, N. Metabolic complications of parenteral nutrition in adults, part 1. Am. J. Health Syst. Pharm. 61, 1938–1949 (2004).
Google Scholar
Gosmanov, A. R. & Umpierrez, G. E. Management of hyperglycemia during enteral and parenteral nutrition therapy. Curr. Diab. Rep. 13, 155–162 (2013).
Google Scholar
Cheung, N. W., Napier, B., Zaccaria, C. & Fletcher, J. P. Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral nutrition. Diabetes Care 28, 2367–2371 (2005).
Google Scholar
Kinnare, K. F., Bacon, C. A., Chen, Y., Sowa, D. C. & Peterson, S. J. Risk factors for predicting hypoglycemia in patients receiving concomitant parenteral nutrition and insulin therapy. J. Acad. Nutr. Diet. 113, 263–268 (2013).
Google Scholar
Coudenys, E., Waele, E. D., Meers, G., Collier, H. & Pen, J. J. Inadequate glycemic control in patients receiving parenteral nutrition lowers survival: a retrospective observational trial. Clin. Nutr. Exp. 17, 1–7 (2018).
Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
Google Scholar
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
Google Scholar
Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).
Google Scholar
de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502–512 (2020).
Google Scholar
Wang, J. et al. Gut microbiota as a modulator of paneth cells during parenteral nutrition in mice. JPEN J. Parenter. Enter. Nutr. 42, 1280–1287 (2018).
Google Scholar
Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017).
Google Scholar
Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).
Google Scholar
Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).
Google Scholar
Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).
Google Scholar
Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).
Google Scholar
Lin, Y. H. et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int. J. Obes. 43, 2407–2421 (2019).
Google Scholar
Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).
Google Scholar
Pironi, L. et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 35, 247–307 (2016).
Google Scholar
Rosmarin, D. K., Wardlaw, G. M. & Mirtallo, J. Hyperglycemia associated with high, continuous infusion rates of total parenteral nutrition dextrose. Nutr. Clin. Pract. 11, 151–156 (1996).
Google Scholar
Ukleja, A. & Romano, M. M. Complications of parenteral nutrition. Gastroenterol. Clin. North Am. 36, 23–46 (2007).
Google Scholar
Bodoky, G., Meguid, M. M., Yang, Z. J. & Laviano, A. Effects of different types of isocaloric parenteral nutrients on food intake and metabolic concomitants. Physiol. Behav. 58, 75–79 (1995).
Google Scholar
Meguid, M. M. et al. Effects of continuous graded total parenteral nutrition on feeding indexes and metabolic concomitants in rats. Am. J. Physiol. 260, E126–E140 (1991).
Google Scholar
Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).
Google Scholar
Heneghan, A. F. et al. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. JPEN J. Parenter. Enter. Nutr. 38, 817–824 (2014).
Google Scholar
Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 31, 77–91 (2020).
Google Scholar
Martin, A. M. et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc. Natl Acad. Sci. USA 116, 19802–19804 (2019).
Google Scholar
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).
Google Scholar
Lu, P. et al. Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 61, 1908–1919 (2015).
Google Scholar
Roh, E. et al. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes. Acta Diabetol. 52, 489–495 (2015).
Google Scholar
Xu, C. X. et al. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int. J. Obes. 39, 1300–1309 (2015).
Google Scholar
Remillard, R. B. & Bunce, N. J. Linking dioxins to diabetes: epidemiology and biologic plausibility. Environ. Health Perspect. 110, 853–858 (2002).
Google Scholar
Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).
Google Scholar
Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).
Google Scholar
DeFronzo, R. A. et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).
Google Scholar
Ying, W. et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J. Clin. Invest. 127, 1019–1030 (2017).
Google Scholar
Kalafateli, M. et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the model for end-stage liver disease score. J. Cachexia Sarcopenia Muscle 8, 113–121 (2017).
Google Scholar
Pichler, J., Chomtho, S., Fewtrell, M., Macdonald, S. & Hill, S. Body composition in paediatric intestinal failure patients receiving long-term parenteral nutrition. Arch. Dis. Child. 99, 147–153 (2014).
Google Scholar
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
Google Scholar
Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).
Google Scholar
Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).
Google Scholar
Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 95, 513–548 (2015).
Google Scholar
Deng, G. et al. Glucagon-like peptide-2 modulates enteric Paneth cells immune response and alleviates gut inflammation during intravenous fluid infusion in mice with a central catheter. Front Nutr. 8, 688715 (2021).
Google Scholar
Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).
Google Scholar
Horan, T. C., Andrus, M. & Dudeck, M. A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 36, 309–332 (2008).
Google Scholar
Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).
Google Scholar
Folkes, L. K. & Wardman, P. Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid). Cancer Res. 63, 776–779 (2003).
Google Scholar
Ji, Y., Gao, Y., Chen, H., Yin, Y. & Zhang, W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis and oxidative and inflammatory stress. Nutrients 11, 2062 (2019).
Google Scholar
Guo, H. et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370, eaay9097 (2020).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Google Scholar
Qi, Z. et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 8, 13824 (2017).
Google Scholar
Virtue, S. & Vidal-Puig, A. GTTs and ITTs in mice: simple tests, complex answers. Nat. Metab. 3, 883–886 (2021).
Google Scholar
link