May 21, 2025
Precision nutrition for cardiometabolic diseases
  • Mozaffarian, D., Blanck, H. M., Garfield, K. M., Wassung, A. & Petersen, R. A Food is Medicine approach to achieve nutrition security and improve health. Nat. Med. 28, 2238–2240 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lichtenstein, A. H. et al. 2021 Dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association. Circulation 144, e472–e487 (2021).

    Article 
    PubMed 

    Google Scholar 

  • The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD). Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 66, 965–985 (2023).

    Article 

    Google Scholar 

  • Dietary Guidelines for Americans, 2020–2025 9th edn. (U.S. Department of Agriculture and U.S. Department of Health and Human Services, 2020).

  • Hassapidou, M. et al. European Association for the Study of Obesity position statement on medical nutrition therapy for the management of overweight and obesity in adults developed in collaboration with the European Federation of the Associations of Dietitians. Obes. Facts 16, 11–28 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Heymsfield, S. B. & Shapses, S. A. Guidance on energy and macronutrients across the life span. N. Engl. J. Med. 390, 1299–1310 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodgers, G. P. & Collins, F. S. Precision nutrition—the answer to ‘what to eat to stay healthy’. JAMA 324, 735–736 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Franks, P. W. et al. Precision medicine for cardiometabolic disease: a framework for clinical translation. Lancet Diabetes Endocrinol. 11, 822–835 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, M. C., Holt, K. E., Del Fiol, G., Baccarelli, A. A. & Allen, C. G. Precision public health in the era of genomics and big data. Nat. Med. 30, 1865–1873 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, D. D. & Hu, F. B. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 6, 416–426 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Piernas, C. & Merino, J. Interwoven challenges of covid-19, poor diet, and cardiometabolic health. BMJ 383, e076810 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Juniusdottir, R. et al. Composition of school meals in Sweden, Finland, and Iceland: official guidelines and comparison with practice and availability. J. Sch. Health 88, 744–753 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Volkert, D. et al. ESPEN practical guideline: clinical nutrition and hydration in geriatrics. Clin. Nutr. 41, 958–989 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mosher, A. L. et al. Dietary guidelines for Americans: implications for primary care providers. Am. J. Lifestyle Med. 10, 23–35 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez, T. L. & Brand-Miller, J. C. Nutrition therapy in gestational diabetes mellitus: time to move forward. Diabetes Care 41, 1343–1345 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparks, J. R., Ghildayal, N., Hivert, M.-F. & Redman, L. M. Lifestyle interventions in pregnancy targeting GDM prevention: looking ahead to precision medicine. Diabetologia 65, 1814–1824 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article 

    Google Scholar 

  • Liu, J., Rehm, C. D., Onopa, J. & Mozaffarian, D. Trends in diet quality among youth in the United States, 1999–2016. JAMA 323, 1161–1174 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agurs-Collins, T. et al. Perspective: Nutrition Health Disparities Framework: a model to advance health equity. Adv. Nutr. 15, 100194 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, M. et al. What role should the commercial food system play in promoting health through better diet? BMJ 368, m545 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. D., Hardin, C. C., Longo, D. L. & Ingelfinger, J. R. Nutrition in medicine—a new review article series. N. Engl. J. Med. 390, 1324–1325 (2024).

    Article 

    Google Scholar 

  • Eisenberg, D. M. et al. Proposed nutrition competencies for medical students and physician trainees: a consensus statement. JAMA Netw. Open 7, e2435425 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Franks, P. W. & McCarthy, M. I. Exposing the exposures responsible for type 2 diabetes and obesity. Science 354, 69–73 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsereteli, N. et al. Impact of insufficient sleep on dysregulated blood glucose control under standardised meal conditions. Diabetologia 65, 356–365 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunton, G. F. Sustaining health-protective behaviors such as physical activity and healthy eating. JAMA 320, 639–640 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, T. et al. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene–diet interaction analysis in two prospective cohort studies. BMJ 360, j5644 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, J. et al. Interaction between type 2 diabetes prevention strategies and genetic determinants of coronary artery disease on cardiometabolic risk factors. Diabetes 69, 112–120 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merino, J. et al. Polygenic scores, diet quality, and type 2 diabetes risk: an observational study among 35,759 adults from 3 US cohorts. PLoS Med. 19, e1003972 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, J. et al. Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ 366, l4292 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franks, P. W. & Merino, J. Gene–lifestyle interplay in type 2 diabetes. Curr. Opin. Genet. Dev. 50, 35–40 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valles-Colomer, M. et al. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat. Med. 29, 551–561 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, H.-E. et al. The gut–brain axis mediates sugar preference. Nature 580, 511–516 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Klaauw, A. A. & Farooqi, I. S. The hunger genes: pathways to obesity. Cell 161, 119–132 (2015).

    Article 
    PubMed 

    Google Scholar 

  • DiFeliceantonio, A. G. et al. Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab. 28, 33–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Der Klaauw, A. A. et al. Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat. Commun. 7, 13055 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, J. et al. Genetic predisposition to macronutrient preference and workplace food choices. Mol. Psychiatry 28, 2606–2611 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lowell, B. B. New neuroscience of homeostasis and drives for food, water, and salt. N. Engl. J. Med. 380, 459–471 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, Y. et al. Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. Cell Metab. 36, 438–453 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tadross, J. A. et al. Human HYPOMAP: a comprehensive spatio-cellular map of the human hypothalamus. Preprint at bioRxiv https://doi.org/10.1101/2023.09.15.557967 (2023).

  • Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, J. Precision nutrition in diabetes: when population-based dietary advice gets personal. Diabetologia 65, 1839–1848 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Trouwborst, I. et al. Cardiometabolic health improvements upon dietary intervention are driven by tissue-specific insulin resistance phenotype: a precision nutrition trial. Cell Metab. 35, 71–83 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nair, A. T. N. et al. Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes. Nat. Med. 28, 982–988 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Florez, J. C. Advancing precision medicine in type 2 diabetes. Lancet Diabetes Endocrinol. 12, 87–88 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bermingham, K. M. et al. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat. Med. 30, 1888–1897 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guess, N. Big data and personalized nutrition: the key evidence gaps. Nat. Metab. 6, 1420–1422 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bucher, A., Blazek, E. S. & Symons, C. T. How are machine learning and artificial intelligence used in digital behavior change interventions? A scoping review. Mayo Clin. Proc. Digit. Health 2, 375–404 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poslusna, K., Ruprich, J., de Vries, J. H. M., Jakubikova, M. & van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. https://doi.org/10.1017/S0007114509990602 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mendez, M. A. Invited commentary: Dietary misreporting as a potential source of bias in diet–disease associations: future directions in nutritional epidemiology research. Am. J. Epidemiol. 181, 234–236 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cuparencu, C. et al. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat. Metab. 6, 1438–1453 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Garcia-Perez, I. et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5, 184–195 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eriksen, R. et al. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: an IMI DIRECT study. EBioMedicine 58, 102932 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 41, 2645–2656 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichelmann, F. et al. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nat. Med. 30, 2867–2877 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landberg, R. et al. Dietary biomarkers—an update on their validity and applicability in epidemiological studies. Nutr. Rev. 82, 1260–1280 (2024).

    Article 
    PubMed 

    Google Scholar 

  • van Dam, R. M., Hu, F. B. & Willett, W. C. Coffee, caffeine, and health. N. Engl. J. Med. 383, 369–378 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lutsker, G. et al. From glucose patterns to health outcomes: a generalizable foundation model for continuous glucose monitor data analysis. Preprint at https://doi.org/10.48550/arXiv.2408.11876 (2024).

  • Sorkin, B. C., Kuszak, A. J., Williamson, J. S., Hopp, D. C. & Betz, J. M. The challenge of reproducibility and accuracy in nutrition research: resources and pitfalls. Adv. Nutr. 7, 383–389 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spector, T. D. & Gardner, C. D. Challenges and opportunities for better nutrition science—an essay by Tim Spector and Christopher Gardner. BMJ 369, m2470 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siri-Tarino, P. W., Sun, Q., Hu, F. B. & Krauss, R. M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 91, 502–509 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludwig, D. S., Ebbeling, C. B. & Heymsfield, S. B. Improving the quality of dietary research. JAMA 322, 1549–1550 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Trajanoska, K. et al. From target discovery to clinical drug development with human genetics. Nature 620, 737–745 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, S. et al. Empowering biomedical discovery with AI agents. Cell 187, 6125–6151 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corbin, L. J. et al. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat. Commun. 9, 711 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franks, P. W. & Timpson, N. J. Genotype-based recall studies in complex cardiometabolic traits. Circ. Genom. Precis. Med. 11, e001947 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, G. S. H. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Klaauw, A. et al. Role of melanocortin signalling in the preference for dietary macronutrients in human beings. Lancet 385, S12 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson-Mann, C. N. et al. A systematic review on participant diversity in clinical trials—have we made progress for the management of obesity and its metabolic sequelae in diet, drug, and surgical trials. J. Racial Ethn. Health Disparities 10, 3140–3149 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Singh, B. et al. A systematic umbrella review and meta-meta-analysis of eHealth and mHealth interventions for improving lifestyle behaviours. NPJ Digit. Med. 7, 179 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iribarren, S. J., Cato, K., Falzon, L. & Stone, P. W. What is the economic evidence for mHealth? A systematic review of economic evaluations of mHealth solutions. PLoS ONE 12, e0170581 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fakih El Khoury, C. F. et al. The effects of dietary mobile apps on nutritional outcomes in adults with chronic diseases: a systematic review and meta-analysis. J. Acad. Nutr. Diet. 119, 626–651 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mateo, G. F., Granado-Font, E., Ferré-Grau, C. & Montaña-Carreras, X. Mobile phone apps to promote weight loss and increase physical activity: a systematic review and meta-analysis. J. Med. Internet Res. 17, e253 (2015).

    Article 

    Google Scholar 

  • Sharma, Y., Saha, A. & Goldsack, J. C. Defining the dimensions of diversity to promote inclusion in the digital era of health care: a lexicon. JMIR Public Health Surveill. 10, e51980 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexandrou, C. et al. User experiences of an app-based mHealth intervention (MINISTOP 2.0) integrated in Swedish primary child healthcare among Swedish-, Somali- and Arabic-speaking parents and child healthcare nurses: a qualitative study. Digit. Health 9, 20552076231203630 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexandrou, C. et al. Effectiveness of a smartphone app (MINISTOP 2.0) integrated in primary child health care to promote healthy diet and physical activity behaviors and prevent obesity in preschool-aged children: randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 20, 22 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, S. et al. Indigenous women and their nutrition during pregnancy (the Mums and Bubs Deadly Diets Project): protocol for a co-designed mHealth resource development study. JMIR Res. Protoc. 12, e45983 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Commodore-Mensah, Y. et al. Design and rationale of the cardiometabolic health program linked with community health workers and mobile health telemonitoring to reduce health disparities (LINKED-HEARTS) program. Am. Heart J. 275, 9–20 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Levy, D. E. et al. Design of ChooseWell 365: randomized controlled trial of an automated, personalized worksite intervention to promote healthy food choices and prevent weight gain. Contemp. Clin. Trials 75, 78–86 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thorndike, A. N., Gelsomin, E. D., McCurley, J. L. & Levy, D. E. Calories purchased by hospital employees after implementation of a cafeteria traffic light-labeling and choice architecture program. JAMA Netw. Open 2, e196789 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mattes, R. D. et al. Valuing the diversity of research methods to advance nutrition science. Adv. Nutr. 13, 1324–1393 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziolkovska, A. & Sina, C. Personalized nutrition as the catalyst for building food-resilient cities. Nat. Food 5, 267–269 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bedsaul-Fryer, J. R. et al. Precision nutrition opportunities to help mitigate nutrition and health challenges in low- and middle-income countries: an expert opinion survey. Nutrients 15, 3247 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben-Yacov, O. et al. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 72, 1486–1496 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bermingham, K. M. et al. Snack quality and snack timing are associated with cardiometabolic blood markers: the ZOE PREDICT study. Eur. J. Nutr. 63, 121–133 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *