April 21, 2025
Environmental mitigation potential of waste-to-nutrition pathways
  • Javourez, U., O’Donohue, M. & Hamelin, L. Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol. Adv. 53, 107857 (2021).

    CAS 

    Google Scholar 

  • Chen, L., Upcraft, T., Piercy, E. & Guo, M. Spatially-explicit projection of future microbial protein from lignocellulosic waste. Curr. Res. Biotechnol. 4, 544–563 (2022).

    CAS 

    Google Scholar 

  • Piercy, E. et al. A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions. Green Chem. 25, 808–832 (2022).

    Google Scholar 

  • Throup, J. et al. Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes. Food Bioprod. Process. 131, 22–39 (2022).

    CAS 

    Google Scholar 

  • Mazac, R. et al. Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat. Food 3, 286–293 (2022).

    Google Scholar 

  • Tallentire, C. W., Mackenzie, S. G. & Kyriazakis, I. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 187, 338–347 (2018).

    Google Scholar 

  • Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Google Scholar 

  • Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).

    CAS 

    Google Scholar 

  • Davis, S. J. et al. Food without agriculture. Nat. Sustain. 7, 90–95 (2024).

  • Alexander, P. et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Sec. 15, 22–32 (2017).

    Google Scholar 

  • Choi, K. R., Jung, S. Y. & Lee, S. Y. From sustainable feedstocks to microbial foods. Nat. Microbiol. 9, 1167–1175 (2024).

  • Muscat, A. et al. Principles, drivers and opportunities of a circular bioeconomy. Nat. Food 2, 561–566 (2021).

    Google Scholar 

  • Spykman, R. et al. A modular environmental and economic assessment applied to the production of Hermetia illucens larvae as a protein source for food and feed. Int. J. Life Cycle Assess. 26, 1959–1976 (2021).

    CAS 

    Google Scholar 

  • Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).

    Google Scholar 

  • El Wali, M., Rahimpour Golroudbary, S., Kraslawski, A. & Tuomisto, H. L. Transition to cellular agriculture reduces agriculture land use and greenhouse gas emissions but increases demand for critical materials. Commun. Earth Environ. 5, 61 (2024).

    Google Scholar 

  • Upcraft, T. et al. Protein from renewable resources: mycoprotein production from agricultural residues. Green Chem. 23, 5150–5165 (2021).

    CAS 

    Google Scholar 

  • Siol, C., Thrän, D. & Majer, S. Utilizing residual biomasses from agriculture and forestry: different approaches to set system boundaries in environmental and economic life-cycle assessments. Biomass Bioenergy 174, 106839 (2023).

    CAS 

    Google Scholar 

  • Bisinella, V., Schmidt, S., Varling, A. S., Laner, D. & Christensen, T. H. Waste LCA and the future. Waste Manage. 174, 53–75 (2024).

    CAS 

    Google Scholar 

  • Olofsson, J. & Börjesson, P. Residual biomass as resource—life-cycle environmental impact of wastes in circular resource systems. J. Clean. Prod. 196, 997–1006 (2018).

    Google Scholar 

  • Javourez, U., Tiruta-Barna, L. & Hamelin, L. Waste reintroduced in the kitchen: life cycles inventories of representative waste-to-nutrition pathways. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3671083/v2 (2023).

  • Javourez, U., Karan, S. K. & Hamelin, L. Residual biomasses at scale: ensuring future bioeconomy uses outperform current baseline. Sci. Total Environ. 949, 174481 (2024).

    CAS 

    Google Scholar 

  • Javourez, U., Rosero Delgado, E. A. & Hamelin, L. Upgrading agrifood co-products via solid fermentation yields environmental benefits under specific conditions only. Nat. Food 3, 911–920 (2022).

    CAS 

    Google Scholar 

  • Simon, W. J. et al. Circular food system approaches can support current European protein intake levels while reducing land use and greenhouse gas emissions. Nat. Food 5, 402–412 (2024).

    CAS 

    Google Scholar 

  • Nappa, M. et al. Solar-powered carbon fixation for food and feed production using microorganisms—a comparative techno-economic analysis. ACS Omega 5, 33242–33252 (2020).

    CAS 

    Google Scholar 

  • European Commission: Directorate-General for Energy et al. Policy Support for Heating and Cooling Decarbonisation—Roadmap (Publications Office of the European Union, 2022).

  • Jovet, Y., Lefevre, F., Laurent, A. & Clausse, M. Assessing the relevance of energy indicators as sustainability screening metrics for the decarbonisation of industrial heat through electrification. Energy 292, 130440 (2024).

    CAS 

    Google Scholar 

  • Rapport annuel 2023—‘Acter l’urgence, engager les moyens’ (Haut Conseil pour le climat, 2023); https://www.hautconseilclimat.fr/publications/rapport-annuel-2023-acter-lurgence-engager-les-moyens/

  • Aubin, J. et al. Environmental trade-offs of meeting nutritional requirements with a lower share of animal protein for adult subpopulations. animal 19, 101182 (2024).

  • Garcia-Launay, F. et al. Multiobjective formulation is an effective method to reduce environmental impacts of livestock feeds. Br. J. Nutr. 120, 1298–1309 (2018).

    CAS 

    Google Scholar 

  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).

    Google Scholar 

  • Duluins, O. & Baret, P. V. A systematic review of the definitions, narratives and paths forwards for a protein transition in high-income countries. Nat. Food 5, 28–36 (2024).

    Google Scholar 

  • Howard, P. H. Cellular agriculture will reinforce power asymmetries in food systems. Nat. Food 3, 798–800 (2022).

    Google Scholar 

  • Reynolds, A. N., Mhurchu, C. N., Kok, Z.-Y. & Cleghorn, C. The neglected potential of red and processed meat replacement with alternative protein sources: simulation modelling and systematic review. EClinicalMedicine 56, 101774 (2023).

    Google Scholar 

  • Gastaldello, A. et al. The rise of processed meat alternatives: a narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends Food Sci. Technol. 127, 263–271 (2022).

    CAS 

    Google Scholar 

  • Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

    Google Scholar 

  • Godfray, H. C. J., Poore, J. & Ritchie, H. Opportunities to produce food from substantially less land. BMC Biol. 22, 138 (2024).

    Google Scholar 

  • Zhao, H. et al. Holistic food system innovation strategies can close up to 80% of China’s domestic protein gaps while reducing global environmental impacts. Nat. Food 5, 581–591 (2024).

  • García Martínez, J. B., Behr, J. & Denkenberger, D. C. Food without agriculture: food from CO2, biomass and hydrocarbons to secure humanity’s food supply against global catastrophe. Trends Food Sci. Technol. 150, 104609 (2024).

    Google Scholar 

  • Tzachor, A., Richards, C. E. & Holt, L. Future foods for risk-resilient diets. Nat. Food 2, 326–329 (2021).

  • Fang, Q. et al. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China. Nat. Food 4, 677–685 (2023).

  • Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).

    Google Scholar 

  • Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Google Scholar 

  • Hamelin, L., Borzęcka, M., Kozak, M. & Pudełko, R. A spatial approach to bioeconomy: quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 100, 127–142 (2019).

    Google Scholar 

  • Santolin, J., Vlaeminck, S. E., Appiah-Twum, H., Van Winckel, T. & Spiller, M. Consequential LCA between NPK fertilizers from microbial, animal, plant, and mineral origin highlights resource constraints and environmental impacts. J. Clean. Prod. 10, 142312 (2024).

  • Javourez, U., Karan, S. & Hamelin, L. Cambioscop RO1: dataset on characterization, quantity and current use of French residual biomasses. Mendeley Data https://doi.org/10.17632/b9sx3h3584.4 (2023).

  • Javourez, U. Life cycle inventories and implications of representative waste-to-nutrition pathways. Dataverse https://doi.org/10.48531/JBRU.CALMIP/UJVBTR (2023).

  • Schaubroeck, T. et al. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restrictions. Sustainability 13, 7386 (2021).

    CAS 

    Google Scholar 

  • Cucurachi, S. et al. Prospective LCA Methodology for Novel and Emerging Technologies for Bio-Based Products: The Planet Bio Project (Publications Office of the European Union, 2022).

    Google Scholar 

  • Kircher, M. et al. Treatment and valorization of bio-waste in the EU. EFB Bioecon. J. 3, 100051 (2023).

    CAS 

    Google Scholar 

  • Weidema, B. P., Pizzol, M., Schmidt, J. & Thoma, G. Attributional or consequential life cycle assessment: a matter of social responsibility. J. Clean. Prod. 174, 305–314 (2018).

    Google Scholar 

  • Weidema, B. P., Frees, N. & Nielsen, A.-M. Marginal production technologies for life cycle inventories. Int. J. LCA 4, 48–56 (1999).

    Google Scholar 

  • Erkkola, M. et al. A slow road from meat dominance to more sustainable diets: an analysis of purchase preferences among Finnish loyalty-card holders. PLOS Sustain. Tranform. 1, e0000015 (2022).

    Google Scholar 

  • Alvaro, C. A virtue–ethical approach to cultured meat. Nat. Food 3, 788–790 (2022).

    Google Scholar 

  • Specht, L. & Crosser, N. Fermentation: An Introduction to a Pillar of the Alternative Protein Industry (GFI, 2020); https://www.gfi.org/files/fermentation/INN-Fermentation-SOTIR-2020-0910.pdf

  • Maes, B. et al. Prospective consequential life cycle assessment: identifying the future marginal suppliers using integrated assessment models. Renew. Sustain. Energy Rev. 188, 113830 (2023).

    Google Scholar 

  • ecoinvent v.3.8. ecoinvent https://ecoinvent.org/ (2022).

  • Transition(s) 2050 – Choisir Maintenant, Agir Pour Le Climat – Rapport (ADEME Editions, 2021).

  • Energy Pathways to 2050—Key Results—Executive Summary (RTE, 2021).

  • Lodato, C., Hamelin, L., Tonini, D. & Astrup, T. F. Towards sustainable methane supply from local bioresources: anaerobic digestion, gasification, and gas upgrading. Appl. Energy 323, 119568 (2022).

    CAS 

    Google Scholar 

  • Mayer, P. et al. Blue and green ammonia production: a techno-economic and life cycle assessment perspective. iScience 26, 107389 (2023).

    CAS 

    Google Scholar 

  • Bailey, R. & Wellesley, L. Chokepoints and Vulnerabilities in Global Food Trade (Chatham House, 2017).

    Google Scholar 

  • Les Matières Premières de l’alimentation Animale En 2020 (Agreste, 2022); https://agreste.agriculture.gouv.fr/agreste-web/download/publication/publie/Chd2208/cd2022-8_Mati%C3%A8res-premi%C3%A8res-alimentation-animale-2020.pdf

  • Tonini, D., Hamelin, L. & Astrup, T. F. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes. Glob. Change Biol. Bioenergy 8, 690–706 (2016).

    CAS 

    Google Scholar 

  • OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031 (OECD, 2022).

    Google Scholar 

  • Mutel, C. Brightway: an open source framework for life cycle assessment. J. Open Source Softw. 2, 236 (2017).

    Google Scholar 

  • Morris, M. D. Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991).

    Google Scholar 

  • Pizzol, M. Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across Scandinavian routes. J. Clean. Prod. 224, 626–636 (2019).

    Google Scholar 

  • Searchinger, T., Waite, R., Hanson, C., Ranganathan, J. & Matthews, E. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050: Final Report (World Resource Institute, 2018).

    Google Scholar 

  • Javourez, U. Prospective environmental mitigation potential of deploying waste-to-nutrition pathways – supporting data. Dataverse https://doi.org/10.48531/JBRU.CALMIP/PBS858 (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *