
Javourez, U., O’Donohue, M. & Hamelin, L. Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol. Adv. 53, 107857 (2021).
Google Scholar
Chen, L., Upcraft, T., Piercy, E. & Guo, M. Spatially-explicit projection of future microbial protein from lignocellulosic waste. Curr. Res. Biotechnol. 4, 544–563 (2022).
Google Scholar
Piercy, E. et al. A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions. Green Chem. 25, 808–832 (2022).
Throup, J. et al. Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes. Food Bioprod. Process. 131, 22–39 (2022).
Google Scholar
Mazac, R. et al. Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat. Food 3, 286–293 (2022).
Tallentire, C. W., Mackenzie, S. G. & Kyriazakis, I. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 187, 338–347 (2018).
Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).
Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).
Google Scholar
Davis, S. J. et al. Food without agriculture. Nat. Sustain. 7, 90–95 (2024).
Alexander, P. et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Sec. 15, 22–32 (2017).
Choi, K. R., Jung, S. Y. & Lee, S. Y. From sustainable feedstocks to microbial foods. Nat. Microbiol. 9, 1167–1175 (2024).
Muscat, A. et al. Principles, drivers and opportunities of a circular bioeconomy. Nat. Food 2, 561–566 (2021).
Spykman, R. et al. A modular environmental and economic assessment applied to the production of Hermetia illucens larvae as a protein source for food and feed. Int. J. Life Cycle Assess. 26, 1959–1976 (2021).
Google Scholar
Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).
El Wali, M., Rahimpour Golroudbary, S., Kraslawski, A. & Tuomisto, H. L. Transition to cellular agriculture reduces agriculture land use and greenhouse gas emissions but increases demand for critical materials. Commun. Earth Environ. 5, 61 (2024).
Upcraft, T. et al. Protein from renewable resources: mycoprotein production from agricultural residues. Green Chem. 23, 5150–5165 (2021).
Google Scholar
Siol, C., Thrän, D. & Majer, S. Utilizing residual biomasses from agriculture and forestry: different approaches to set system boundaries in environmental and economic life-cycle assessments. Biomass Bioenergy 174, 106839 (2023).
Google Scholar
Bisinella, V., Schmidt, S., Varling, A. S., Laner, D. & Christensen, T. H. Waste LCA and the future. Waste Manage. 174, 53–75 (2024).
Google Scholar
Olofsson, J. & Börjesson, P. Residual biomass as resource—life-cycle environmental impact of wastes in circular resource systems. J. Clean. Prod. 196, 997–1006 (2018).
Javourez, U., Tiruta-Barna, L. & Hamelin, L. Waste reintroduced in the kitchen: life cycles inventories of representative waste-to-nutrition pathways. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3671083/v2 (2023).
Javourez, U., Karan, S. K. & Hamelin, L. Residual biomasses at scale: ensuring future bioeconomy uses outperform current baseline. Sci. Total Environ. 949, 174481 (2024).
Google Scholar
Javourez, U., Rosero Delgado, E. A. & Hamelin, L. Upgrading agrifood co-products via solid fermentation yields environmental benefits under specific conditions only. Nat. Food 3, 911–920 (2022).
Google Scholar
Simon, W. J. et al. Circular food system approaches can support current European protein intake levels while reducing land use and greenhouse gas emissions. Nat. Food 5, 402–412 (2024).
Google Scholar
Nappa, M. et al. Solar-powered carbon fixation for food and feed production using microorganisms—a comparative techno-economic analysis. ACS Omega 5, 33242–33252 (2020).
Google Scholar
European Commission: Directorate-General for Energy et al. Policy Support for Heating and Cooling Decarbonisation—Roadmap (Publications Office of the European Union, 2022).
Jovet, Y., Lefevre, F., Laurent, A. & Clausse, M. Assessing the relevance of energy indicators as sustainability screening metrics for the decarbonisation of industrial heat through electrification. Energy 292, 130440 (2024).
Google Scholar
Rapport annuel 2023—‘Acter l’urgence, engager les moyens’ (Haut Conseil pour le climat, 2023); https://www.hautconseilclimat.fr/publications/rapport-annuel-2023-acter-lurgence-engager-les-moyens/
Aubin, J. et al. Environmental trade-offs of meeting nutritional requirements with a lower share of animal protein for adult subpopulations. animal 19, 101182 (2024).
Garcia-Launay, F. et al. Multiobjective formulation is an effective method to reduce environmental impacts of livestock feeds. Br. J. Nutr. 120, 1298–1309 (2018).
Google Scholar
Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).
Duluins, O. & Baret, P. V. A systematic review of the definitions, narratives and paths forwards for a protein transition in high-income countries. Nat. Food 5, 28–36 (2024).
Howard, P. H. Cellular agriculture will reinforce power asymmetries in food systems. Nat. Food 3, 798–800 (2022).
Reynolds, A. N., Mhurchu, C. N., Kok, Z.-Y. & Cleghorn, C. The neglected potential of red and processed meat replacement with alternative protein sources: simulation modelling and systematic review. EClinicalMedicine 56, 101774 (2023).
Gastaldello, A. et al. The rise of processed meat alternatives: a narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends Food Sci. Technol. 127, 263–271 (2022).
Google Scholar
Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).
Godfray, H. C. J., Poore, J. & Ritchie, H. Opportunities to produce food from substantially less land. BMC Biol. 22, 138 (2024).
Zhao, H. et al. Holistic food system innovation strategies can close up to 80% of China’s domestic protein gaps while reducing global environmental impacts. Nat. Food 5, 581–591 (2024).
García Martínez, J. B., Behr, J. & Denkenberger, D. C. Food without agriculture: food from CO2, biomass and hydrocarbons to secure humanity’s food supply against global catastrophe. Trends Food Sci. Technol. 150, 104609 (2024).
Tzachor, A., Richards, C. E. & Holt, L. Future foods for risk-resilient diets. Nat. Food 2, 326–329 (2021).
Fang, Q. et al. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China. Nat. Food 4, 677–685 (2023).
Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).
Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).
Hamelin, L., Borzęcka, M., Kozak, M. & Pudełko, R. A spatial approach to bioeconomy: quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 100, 127–142 (2019).
Santolin, J., Vlaeminck, S. E., Appiah-Twum, H., Van Winckel, T. & Spiller, M. Consequential LCA between NPK fertilizers from microbial, animal, plant, and mineral origin highlights resource constraints and environmental impacts. J. Clean. Prod. 10, 142312 (2024).
Javourez, U., Karan, S. & Hamelin, L. Cambioscop RO1: dataset on characterization, quantity and current use of French residual biomasses. Mendeley Data https://doi.org/10.17632/b9sx3h3584.4 (2023).
Javourez, U. Life cycle inventories and implications of representative waste-to-nutrition pathways. Dataverse https://doi.org/10.48531/JBRU.CALMIP/UJVBTR (2023).
Schaubroeck, T. et al. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restrictions. Sustainability 13, 7386 (2021).
Google Scholar
Cucurachi, S. et al. Prospective LCA Methodology for Novel and Emerging Technologies for Bio-Based Products: The Planet Bio Project (Publications Office of the European Union, 2022).
Kircher, M. et al. Treatment and valorization of bio-waste in the EU. EFB Bioecon. J. 3, 100051 (2023).
Google Scholar
Weidema, B. P., Pizzol, M., Schmidt, J. & Thoma, G. Attributional or consequential life cycle assessment: a matter of social responsibility. J. Clean. Prod. 174, 305–314 (2018).
Weidema, B. P., Frees, N. & Nielsen, A.-M. Marginal production technologies for life cycle inventories. Int. J. LCA 4, 48–56 (1999).
Erkkola, M. et al. A slow road from meat dominance to more sustainable diets: an analysis of purchase preferences among Finnish loyalty-card holders. PLOS Sustain. Tranform. 1, e0000015 (2022).
Alvaro, C. A virtue–ethical approach to cultured meat. Nat. Food 3, 788–790 (2022).
Specht, L. & Crosser, N. Fermentation: An Introduction to a Pillar of the Alternative Protein Industry (GFI, 2020); https://www.gfi.org/files/fermentation/INN-Fermentation-SOTIR-2020-0910.pdf
Maes, B. et al. Prospective consequential life cycle assessment: identifying the future marginal suppliers using integrated assessment models. Renew. Sustain. Energy Rev. 188, 113830 (2023).
ecoinvent v.3.8. ecoinvent https://ecoinvent.org/ (2022).
Transition(s) 2050 – Choisir Maintenant, Agir Pour Le Climat – Rapport (ADEME Editions, 2021).
Energy Pathways to 2050—Key Results—Executive Summary (RTE, 2021).
Lodato, C., Hamelin, L., Tonini, D. & Astrup, T. F. Towards sustainable methane supply from local bioresources: anaerobic digestion, gasification, and gas upgrading. Appl. Energy 323, 119568 (2022).
Google Scholar
Mayer, P. et al. Blue and green ammonia production: a techno-economic and life cycle assessment perspective. iScience 26, 107389 (2023).
Google Scholar
Bailey, R. & Wellesley, L. Chokepoints and Vulnerabilities in Global Food Trade (Chatham House, 2017).
Les Matières Premières de l’alimentation Animale En 2020 (Agreste, 2022); https://agreste.agriculture.gouv.fr/agreste-web/download/publication/publie/Chd2208/cd2022-8_Mati%C3%A8res-premi%C3%A8res-alimentation-animale-2020.pdf
Tonini, D., Hamelin, L. & Astrup, T. F. Environmental implications of the use of agro-industrial residues for biorefineries: application of a deterministic model for indirect land-use changes. Glob. Change Biol. Bioenergy 8, 690–706 (2016).
Google Scholar
OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031 (OECD, 2022).
Mutel, C. Brightway: an open source framework for life cycle assessment. J. Open Source Softw. 2, 236 (2017).
Morris, M. D. Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991).
Pizzol, M. Deterministic and stochastic carbon footprint of intermodal ferry and truck freight transport across Scandinavian routes. J. Clean. Prod. 224, 626–636 (2019).
Searchinger, T., Waite, R., Hanson, C., Ranganathan, J. & Matthews, E. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050: Final Report (World Resource Institute, 2018).
Javourez, U. Prospective environmental mitigation potential of deploying waste-to-nutrition pathways – supporting data. Dataverse https://doi.org/10.48531/JBRU.CALMIP/PBS858 (2024).
link